Numerical methods for the generalized Zakharov system

نویسندگان

  • Weizhu Bao
  • Fangfang Sun
چکیده

We present two numerical methods for the approximation of the generalized Zakharov system (ZS). The first one is the time-splitting spectral (TSSP) method, which is explicit, time reversible, and time transverse invariant if the generalized ZS is, keeps the same decay rate of the wave energy as that in the generalized ZS, gives exact results for the plane-wave solution, and is of spectral-order accuracy in space and second-order accuracy in time. The second one is to use a local spectral method, the discrete singular convolution (DSC) for spatial derivatives and the fourth-order Runge– Kutta (RK4) for time integration, which is of high (the same as spectral)-order accuracy in space and can be applied to deal with general boundary conditions. In order to test accuracy and stability, we compare these two methods with other existing methods: Fourier pseudospectral method (FPS) and wavelet-Galerkin method (WG) for spatial derivatives combining with the RK4 for time integration, as well as the standard finite difference method (FD) for solving the ZS with a solitary-wave solution. Furthermore, extensive numerical tests are presented for plane waves, solitary-wave collisions in 1d, as well as a 2d problem of the generalized ZS. Numerical results show that TSSP and DSC are spectralorder accuracy in space and much more accurate than FD, and for stability, TSSP requires k 1⁄4 OðhÞ, DSC–RK4 requires k 1⁄4 OðhÞ for fixed acoustic speed, where k is the time step and h is the spatial mesh size. 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Collocation Method Based on Chebyshev Polynomials for the Generalized Zakharov Equation

In this paper, we use the spectral collocation method based on Chebyshev polynomials for spatial derivatives and fourth order Runge-Kutta (RK) method for time integration to solve the generalized Zakharov equation (GZE). Firstly, theory of application of Chebyshev spectral collocation method on the GZE is presented. This method yields a system of ordinary differential equations (ODEs). Secondly...

متن کامل

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

Efficient and Stable Numerical Methods for the Generalized and Vector Zakharov System

In this talk, we present efficient and stable numerical methods for the generalized Zakharov system (GZS) describing the propagation of Langmuir waves in plasma. The key point in designing the methods is based on a time-splitting discretization of a Schroedinger-type equation in GZS, and to discretize a nonlinear wave-type equation by pseudospectral method for spatial derivatives, and then solv...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

Numerical simulation of a generalized Zakharov system q

In this paper, we propose and study two time-splitting spectral methods for the generalized Zakharov system. These methods are spectrally accurate in space, second order in time, and unconditionally stable. The unconditional stability of the methods offers greater numerical efficiency than those given in previous papers, especially in the subsonic regime. Our numerical experiments confirm the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003